Enter a problem...
Linear Algebra Examples
Step 1
Set the denominator in equal to to find where the expression is undefined.
Step 2
Step 2.1
Subtract from both sides of the equation.
Step 2.2
Divide each term in by and simplify.
Step 2.2.1
Divide each term in by .
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Cancel the common factor of .
Step 2.2.2.1.1
Cancel the common factor.
Step 2.2.2.1.2
Divide by .
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Move the negative in front of the fraction.
Step 2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 2.4
Simplify .
Step 2.4.1
Rewrite as .
Step 2.4.1.1
Rewrite as .
Step 2.4.1.2
Rewrite as .
Step 2.4.2
Pull terms out from under the radical.
Step 2.4.3
Raise to the power of .
Step 2.4.4
Rewrite as .
Step 2.4.5
Any root of is .
Step 2.4.6
Multiply by .
Step 2.4.7
Combine and simplify the denominator.
Step 2.4.7.1
Multiply by .
Step 2.4.7.2
Raise to the power of .
Step 2.4.7.3
Use the power rule to combine exponents.
Step 2.4.7.4
Add and .
Step 2.4.7.5
Rewrite as .
Step 2.4.7.5.1
Use to rewrite as .
Step 2.4.7.5.2
Apply the power rule and multiply exponents, .
Step 2.4.7.5.3
Combine and .
Step 2.4.7.5.4
Cancel the common factor of .
Step 2.4.7.5.4.1
Cancel the common factor.
Step 2.4.7.5.4.2
Rewrite the expression.
Step 2.4.7.5.5
Evaluate the exponent.
Step 2.4.8
Simplify the numerator.
Step 2.4.8.1
Rewrite as .
Step 2.4.8.2
Raise to the power of .
Step 3
The domain is all values of that make the expression defined.
Interval Notation:
Set-Builder Notation:
Step 4